1. Completely factor $168x^9 - 32x^8 - 8x^7$. One of the factors is:
 a) $7x + 1$ b) $8x^9$ c) $3x + 1$ d) $7x - 1$ e) $21x^2 - 4x$

2. Factor $x^2 - 2x - 3$ and $x^2 + 4x - 5$.
 Which of the following is NOT a factor of either polynomial?
 a) $x + 5$ b) $x - 3$ c) $x - 1$ d) $x - 5$ e) $x + 1$

3. What is the greatest common factor of $18x^8y^2 - 48x^3y^5$?
 a) $864x^{11}y^7$ b) $6x^5y^3$ c) $6x^{11}y^7$ d) $6x^3y^2$ e) $6x^3y^5$

4. Factor $21x^2 - 41x + 10$. One of the factors is:
 a) $7x + 2$ b) $7x - 2$ c) $7x - 10$ d) $3x + 5$ e) $21x - 1$

5. Completely factor $4x^6 - 36x^4$. Which is NOT a factor?
 a) $x - 9$ b) x^4 c) $x - 3$ d) 4 e) $x + 3$

6. Solve $10x^2 - 7 = -33x$. The solutions are:
 a) $-13/5$ b) $-7/5$ and $1/2$ c) $-7/2$ and $1/5$
 d) $7/5$ and $-1/2$ e) $7/2$ and $-1/5$

7. Given the function $f(x) = 3x^2 - 8x + 2$, find $f(-7)$.
 a) 93 b) 205 c) -89 d) 499 e) -201

8. Find the least common denominator for: $t^2 + 14t + 33$ and $t^2 - 9$.
 a) $(t + 3)^2(t - 3)(t + 11)$ b) $(t + 3)(t - 3)(t + 11)$
 c) 1 d) $(t - 3)(t + 11)$ e) $(t + 3)$

Continued on Page 2
9. Multiply and write your answer in lowest terms: \(\frac{y^2 - 10y - 11}{y^2 - 4y - 5} \) y + 11
 \[\frac{a)}{25} \quad b) \quad \frac{25(-10y - 11)}{121(-4y - 5)} \]
 \[c) \quad \frac{5}{11} \quad d) \quad \frac{(y - 11)(y - 11)(y + 11)}{(y - 5)(y - 5)(y + 5)} \]
 \[e) \quad \frac{y + 5}{y + 11} \]

10. Simplify (write in lowest terms; reduce): \(\frac{33x - 55}{55 - 4x} \)
 \[a) \quad \frac{3}{4} \quad b) \quad \frac{3x - 1}{1 - 4x} \quad c) \quad \frac{-3}{4} \quad d) \quad \frac{3x - 5}{5 - 4x} \quad e) \quad \frac{33x - 1}{1 - 44x} \]

11. Solve: \(\frac{6}{7y} - \frac{3}{4y} = \frac{5}{28} \)
 \[a) \quad 5/28 \quad b) \quad 3/5 \quad c) \quad -3/5 \quad d) \quad 28/5 \quad e) \quad 5/3 \]

12. Find the least common denominator for \(\frac{1}{20u^{12}} \) and \(\frac{1}{25u^{30}} \)
 \[a) \quad 100u^{30} \quad b) \quad 5u^{12} \quad c) \quad 100u^{12} \quad d) \quad 100u^{30} \quad e) \quad 500u^{30} \]

13. Divide and write your answer in lowest terms: \(\frac{2x + 24}{8x + 24} + \frac{x + 72}{24x + 72} \)
 \[a) \quad \frac{(x + 81)(x + 72)}{64(x + 3)(x + 3)} \quad b) \quad \frac{9(x + 8)}{x + 72} \quad c) \quad 9 \]
 \[d) \quad \frac{18x}{x + 3} \quad e) \quad \frac{(3x + 1)(x + 72)}{(8x + 1)(x + 3)} \]

14. Add and write your answer in lowest terms: \(\frac{8}{u^2 - 4u - 5} + \frac{3}{u^2 - 6u - 7} \)
 \[a) \quad \frac{11u - 71}{(u + 1)^2(u - 5)(u - 7)} \quad b) \quad \frac{11u^2 - 60u - 71}{11u - 71} \quad c) \quad \frac{11u - 71}{(u + 1)(u - 5)(u - 7)} \]
 \[d) \quad \frac{11u - 71}{2u^2 - 10u - 12} \]

Continued on Page 3
15. Simplify the complex fraction: \(\frac{9n + 72}{5n^4} \div \frac{5n + 40}{n^8} \)

a) \(\frac{8n^4}{5} \)

b) \(\frac{72n^5}{5n + 40} \)

c) \(\frac{5(n + 8)^2}{n^{12}} \)

d) \(\frac{n^4}{5} \)

e) \(\frac{n^4(n + 72)}{5n + 40} \)

16. Find the \(x \)-intercept of the straight line \(3x + 11y = 2 \).

a) 2/11

b) -3/11

c) 3

d) 11

e) 2/11

17. Find the equation of the straight line passing through the origin whose slope is 3/13.

a) 13x + 3y = 0

b) 3x = 13y

c) 3x + 13y = 0

d) 13x = 3y

e) 3x + 13y = 1

18. Find the slope of \(7x - 13y = 2 \).

a) 7

b) -7

c) 7/13

d) -2/13

e) 13/7

19. Find the slope of the straight line \(y = 4 - 7x \).

a) 4

b) -7/4

c) 7

d) -7

e) -4

20. Find the slope of the straight line which passes through \((-12,17)\) and \((7,-4)\).

a) 13/19

b) -21/19

c) 21/5

d) -13/5

e) -29/11

21. Find the equation of the straight line which passes through \((2,8)\) and has a slope of 6.

a) \(8x + 2y = 6 \)

b) \(6x + y = -4 \)

c) \(-6x + y = -4 \)

d) \(-6x + y = 6 \)

e) \(2x + 8y = 6 \)

22. The length of a rectangle is 2 more than its width. If the area of the rectangle is 80, write down an equation that can be used to find its width, \(x \).

a) \(x(x + 80) = 2 \)

b) \((x - 2)x = 80 \)

c) \(x(x + 2) = 80 \)

d) \(2(x + 2) + 2x = 80 \)

e) \((x - 80)x = 2 \)

Continued on Page 4
23. The current in a river moves at the rate of 7 miles per hour. If \(x \) represents the speed of a boat in still water, write down an expression which represents the time it takes for the boat to travel 133 miles downstream.

\[\begin{align*}
\text{a) } & \frac{133}{x} \quad \text{b) } \frac{133}{x-7} \\
\text{c) } & \frac{133}{x+7} \\
\text{d) } & \frac{133}{7} \\
\text{e) } & \frac{133}{7-x}
\end{align*} \]

24. Sofas cost 396 dollars to produce and 73 hours to make. Stoves take 61 hours to make and 265 dollars to produce. A total of 13607 dollars were spent and 2642 hours were used producing x sofas and y stoves. Find a system of equations which can be used to solve for \(x \) and \(y \).

\[\begin{align*}
\text{a) } & 73x + 396y = 2642 \\
& 61x + 265y = 13607 \\
\text{b) } & 73x + 396y = 13607 \\
& 61x + 265y = 2642 \\
\text{c) } & 61x + 73y = 2642 \\
& 265x + 396y = 13607 \\
\text{d) } & 73x + 61y = 2642 \\
& 396x + 265y = 13607 \\
\text{e) } & 73x + 265y = 2642 \\
& 396x + 61y = 13607
\end{align*} \]

PART II: Do all your work in the front of the blue booklet. Leave your answer there. Partial credit is allowed.

25. Solve the system by using the addition method: \(2x - 3y = 8 \) (the method of elimination) \(5x + 7y = -9 \) (7 points)

26. Solve by substitution: \(9x + y = -49 \) \(5x + 8y = -57 \) (7 points)

27. Graph: \(14x + 9y = 21 \) (5 points)

28. Graph: \(4x = -12 \) (3 points)

29. Graph: \(2x + 5y \geq 0 \) (6 points)

HAND IN THIS EXAM WITH THE BLUE BOOKLET