PART I: Do all your work in the back of the blue booklet. Write your answer on the line to the right of each problem. No partial credit allowed. 3 points each.

1. What is the greatest common factor of $81x^7y^3 - 63x^4y^5$?
 a) $9x^7y^5$ b) $9x^{11}y^8$ c) $9x^4y^3$ d) $5103x^{11}y^8$
 e) $9x^3y^2$

2. Factor $21x^2 + 37x - 10$. One of the factors is:
 a) $3x - 5$ b) $21x - 5$ c) $3x + 2$ d) $3x + 5$ e) $3x - 2$

3. Factor $x^2 - 49x$ and $x^2 - 81$.
 Which of the following is NOT a factor of either polynomial?
 a) x b) $x - 9$ c) $x - 49$ d) $x + 9$ e) $x - 7$

4. Factor $x^2 + x - 2$ and $x^2 - 2x - 3$.
 Which of the following is NOT a factor of either polynomial?
 a) $x + 2$ b) $x - 3$ c) $x + 3$ d) $x - 1$ e) $x + 1$

5. Completely factor: $3x^6 - 30x^5 + 63x^4$.
 Which of the following is NOT a factor?
 a) $t - 3$ b) $t - 7$ c) $t + 7$ d) 3 e) t^4

6. Solve $35x^2 - 2 = 3x$. The solutions are:
 a) $2/7$ and $-1/5$ b) $1/7$ c) $-2/7$ and $1/5$
 d) $2/5$ and $-1/7$ e) $-2/5$ and $1/7$

7. Given the function $f(x) = 7x^2 - 9x + 3$, find $f(-8)$.
 a) -373 b) 3211 c) 379 d) -517 e) 523

8. Find the least common denominator for:
 $\frac{1}{t^2 + 9t - 22}$ $\frac{1}{t^2 - 4}$
 a) $(t - 2)(t + 2)(t + 11)$ b) $(t - 2)^2(t + 2)(t + 11)$
 c) $(t - 2)$ d) 1
e) $(t + 2)(t + 11)$
9. Multiply and write your answer in lowest terms: \[\frac{m^2 + 6m + 5 \cdot m^2 - 4}{m^2 + 3m + 2 \cdot m^2 - 25} \]
 a) \[\frac{2}{5} \]
 b) \[\frac{(m + 5)(m + 5)(m - 5)}{(m + 2)(m + 2)(m - 2)} \]
 c) \[\frac{4}{5} \]
 d) \[\frac{4(m + 5)}{25(3m + 2)} \]
 e) \[\frac{m - 2}{m - 5} \]

10. Subtract and write your answer in lowest terms: \[\frac{8x^3 - \frac{7}{8x^3}}{y^4} \]
 a) \[\frac{x^3 - 7}{y^4} \]
 b) \[\frac{8x^6 - 7}{y^4} \]
 c) \[\frac{64x^9 - 7y^4}{8x^4y^3} \]
 d) \[\frac{64x^9 - 7y^4}{8x^4y^3} \]
 e) \[\frac{x^3 - 7y^4}{y^4} \]

11. For what values of \(x \) is \(x - 11 \) undefined? \(x^2 - 4x - 5 \)
 a) 5
 b) 11
 c) -1 or 5
 d) -4
 e) -11

12. Solve: \[\frac{4}{7r} - \frac{2}{5r} = \frac{19}{35} \]
 a) 19/35
 b) -6/19
 c) 35/19
 d) 6/19
 e) 19/6

13. Divide and write your answer in lowest terms: \[\frac{5n + 10 \cdot n + 50}{n + 5} \]
 a) \[\frac{50n}{2n + 10 \cdot 10n + 50} \]
 b) \[\frac{(5n + 1)(n + 50)}{(2n + 1)(n + 5)} \]
 c) \[\frac{25}{4(n + 5)} \]
 d) \[\frac{25(n + 2)}{(n + 5)(n + 50)} \]
 e) \[\frac{(n + 2)(n + 50)}{4(n + 5)} \]

14. Add and write your answer in lowest terms: \[\frac{4}{28r - 35} + \frac{6r + 5}{12r - 15} \]
 a) \[\frac{42r + 47}{21(4r - 5)} \]
 b) \[\frac{6r + 9}{40r - 50} \]
 c) \[\frac{42r + 47}{21} \]
 d) \[\frac{168r^2 - 22r - 235}{21} \]

Continued on Page 3
15. Simplify the complex fraction: \[\frac{7 + \frac{6}{x}}{2 - \frac{7}{y}} \]
 a) \(\frac{2xy + 6y}{2x - 7} \) b) \(\frac{7 + 6y}{2 - 7x} \) c) \(\frac{7y + 6}{2 - 7} \) d) \(\frac{7 + 6x}{2 - 7y} \) e) \(\frac{7x + 6}{2y - 7} \)

16. Find the equation of the horizontal straight line which passes through the point (4,6).
 a) \(y = 4 \) b) \(4x + 6y = 0 \) c) \(x = 6 \) d) \(3x = 12 \) e) \(3y = 18 \)

17. Find the slope of the straight line which passes through (-1,3) and (5,-18).
 a) \(-\frac{4}{23} \) b) \(-\frac{5}{2} \) c) \(-\frac{7}{2} \) d) \(-\frac{15}{4} \) e) \(-\frac{21}{4} \)

18. Find the slope of \(11x - 7y = 13 \).
 a) \(\frac{7}{11} \) b) \(-\frac{13}{7} \) c) \(11 \) d) \(-11 \) e) \(\frac{11}{7} \)

19. Find the equation of the straight line which passes through (4,8) and has a slope of 6.
 a) \(8x + 4y = 6 \) b) \(-6x + y = -16 \) c) \(6x + y = -16 \) d) \(-6x + y = 4 \) e) \(4x + 8y = 6 \)

20. Find the slope of the straight line \(y = -2 - 6x \).
 a) \(6 \) b) \(-2 \) c) \(-6 \) d) \(2 \) e) \(3 \)

21. Find the \(y \)-intercept of the straight line \(13x + 5y = 3 \).
 a) \(5 \) b) \(-13/5 \) c) \(13 \) d) \(3/5 \) e) \(3/13 \)

22. The product of two integers is 91. The larger is 8 less than 3 times the smaller. Write down an equation that can be used to solve for the smaller integer, \(x \).
 a) \((8 - 3x)x = 91 \) b) \(x = 91(8 - 3x) \) c) \((3x - 8)x = 91 \) d) \(3x^2 - 8 = 91x \) e) \(3x - 8 = 91x \)

Continued on Page 4
23. The current in a river moves at the rate of 14 miles per hour. If \(x \) represents the speed of a boat in still water, write down an expression which represents the time it takes for the boat to travel 168 miles upstream.
 a) \(\frac{168}{x - 14} \)
 b) \(\frac{12}{x} \)
 c) \(\frac{182}{x + 14} \)
 d) \(\frac{168}{14 - x} \)
 e) \(\frac{168}{x} \)

24. Luis invested a total of $71,300 in two accounts. One paid interest at the rate of 6% per year while the other paid interest at the rate of 5% per year. If the total interest that Luis received after one year was $3916, then find a system of equations that can be used to determine how much was invested at each rate by Luis.
 (Use interest = principal \times \text{rate} \times \text{time}.)
 a) \(6x + 5y = 71,300 \)
 \(x + y = 3916 \)
 b) \(x + y = 71,300 \)
 \(6x + 5y = 3916 \)
 c) \(0.06x + 0.05y = 71,300 \)
 \(x + y = 3916 \)
 d) \(y = 71,300 + x \)
 \(0.06x + 0.05y = 3916 \)
 e) \(x + y = 71,300 \)
 \(0.06x + 0.05y = 3916 \)

PART II: Do all your work in the front of the blue booklet. Leave your answer there. Partial credit is allowed.

25. Solve the system by using the addition method: \(2x + 9y = -37 \)
 \(5x - 7y = 55 \)
 (the method of elimination)
 (7 points)

26. Solve by substitution: \(9x - 4y = -70 \)
 \(6x + y = -32 \)
 (7 points)

27. Graph: \(3x + 4y \leq 0 \)
 (6 points)

28. Graph: \(4x = 8 \)
 (3 points)

29. Graph: \(9x - 14y = 21 \)
 (5 points)

HAND IN THIS EXAM WITH THE BLUE BOOKLET